\qquad

Section 1.5 Infinite Limits

Consider the function $f(x)=\frac{3}{x-2}$. In this case, we say that $f(x)$ decreases without bound as x approaches 2 from the left, and $f(x)$ increases without bound as x approaches 2 from the right.

$f(x)$ increases and decreases without bound as x approaches 2 .

and

$$
\lim _{x \rightarrow 2^{+}} \frac{3}{x-2}=\infty \quad f(x) \text { increases without bound as } x \text { approaches } 2 \text { from the right. }
$$

Definition of Infinite Limits

Let f be a function that is defined at every real number in some open interval containing c (except possibly at c itself). The statement

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

means that for each $M>0$ there exists a $\delta>0$ such that $f(x)>M$ whenever $0<|x-c|<\delta$ (see Figure 1.40). Similarly, the statement

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

means that for each $N<0$ there exists a $\delta>0$ such that $f(x)<N$ whenever $0<|x-c|<\delta$. To define the infinite limit from the left, replace $0<|x-c|<\delta$ by $c-\delta<x<c$. To define the infinite limit from the right, replace $0<|x-c|<\delta$ by $c<x<c+\delta$.

The symbols ∞ and $-\infty$ do not represent real numbers. They are convenient symbols used to describe unbounded conditions more concisely.

A limit in which $f(x)$ increases or decreases without bound as x approaches \mathcal{C} is called an infinite limit.

Be sure that you see the equal sign in the statement $\lim f(x)=\infty$ does not mean that the limit exists! On the contrary, it tells us how the limit fails to exist by denoting the unbounded behavior of $f(x)$ as x approaches c.

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -2 from the left and from the right.
Ex. 1
$f(x)=2\left|\frac{x}{x^{2}-4}\right|$

Ex. 2

$f(x)=\frac{1}{x+2}$

Ex. 3

$f(x)=\sec \frac{\pi x}{4}$

By completing the table, determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -3 from the left and from the right. Graph the function to confirm your result.
Ex. $4 f(x)=\frac{x^{2}}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001
$f(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				

Ex. $5 f(x)=\cot \left(\frac{\pi x}{3}\right)$

x	-3.5	-3.1	-3.01	-3.001
$f(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				

Definition of Vertical Asymptote

If $f(x)$ approaches infinity (or negative infinity) as x approaches c from the right or the left, then the line $x=c$ is a vertical asymptote of the graph of f.

THEOREM I.I4 Vertical Asymptotes

Let f and g be continuous on an open interval containing c. If $f(c) \neq 0$, $g(c)=0$, and there exists an open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by

$$
h(x)=\frac{f(x)}{g(x)}
$$

has a vertical asymptote at $x=c$.

Find the vertical asymptotes of the graph of the function. Graph the function to confirm your result.
Ex. $6 f(x)=\frac{x^{2}-9}{x^{3}+3 x^{2}-x-3}$

Ex. $7 \quad f(x)=\tan (\pi x)$

Determine whether the function has a vertical asymptote, or a removable discontinuity at $x=-1$. Graph the function to confirm your result.
Ex. $8 f(x)=\frac{x^{2}-2 x-8}{x+1}$

Ex. $9 f(x)=\frac{x^{2}+1}{x+1}$

THEOREM I.I5 Properties of Infinite Limits

Let c and L be real numbers and let f and g be functions such that

$$
\lim _{x \rightarrow c} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L .
$$

1. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\infty$
2. Product:

$$
\begin{aligned}
& \lim _{x \rightarrow c}[f(x) g(x)]=\infty, \quad L>0 \\
& \lim _{x \rightarrow c}[f(x) g(x)]=-\infty, \quad L<0
\end{aligned}
$$

3. Quotient: $\quad \lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$

Similar properties hold for one-sided limits and for functions for which the limit of $f(x)$ as x approaches c is $-\infty$.

Find the one-sided limit. If it does not exist, explain why.
Ex. $10 \lim _{x \rightarrow \frac{1}{2}^{+}} \frac{6 x^{2}+x-1}{4 x^{2}-4 x-3}$

Ex. $11 \lim _{x \rightarrow 0^{+}}\left(6+\frac{1}{x^{3}}\right)$

Ex. $12 \lim _{x \rightarrow 3^{+}}\left(\frac{x}{3}+\cot \left(\frac{\pi x}{2}\right)\right)$

Ex. $13 \lim _{x \rightarrow \frac{\pi^{+}}{2}} \frac{-2}{\cos (x)}$

Ex. $14 \lim _{x \rightarrow 0^{-}} \frac{x+2}{\cot (x)}$

Ex. $15 \lim _{x \rightarrow \frac{1}{2}^{+}} x^{2} \tan (\pi x)$

